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Existence of the Thermodynamic Limit in 
Nonequilibrium Systems 
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The existence of a thermodynamic limit in nonequilibrium stochastic and 
quantal systems is proven for finite-range interactions and macrovariables 
which are bounded in the sense of norm. This condition is easily confirmed 
to be satisfied for specific models, such as the kinetic Ising model and 
quantal spin systems. 
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1. I N T R O D U C T I O N  

One of the general concepts in nonequilibrium systems is the extensivity of  
a macrovariable and of the logarithm of a reduced density matrix or generat- 
ing function, which was proposed by Kubo (1~ for a Markovian process 
described by the Kramers -Moyal  equation. This extensive property is a 
direct consequence of the existence of a thermodynamic limit in nonequi- 
librium systems, as discussed in previous papers. (2-s~ The previous proof  of 
the existence of a thermodynamic limit was given under the "abs t rac t "  
condition that all relevant operators such as the Hamiltonian and a macro- 
variable X are local (or finite-range) operators bounded in the sense of  
certain canonical averagesJ 2-5~ At first sight, it seems difficult to confirm this 
abstract condition in specific models. 

The purpose of this paper is to give a rigorous proof  of  the existence of 
a thermodynamic limit in nonequilibrium systems, under the general explicit 
condition that all relevant operators are of  finite range and bounded in the 
sense of  norm (i.e., operators in a Banach algebra). The method of the proof  
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is essentially the same as before. (2-5~ An important new point in the present 
paper is to transform upper bounds appearing in the proof into some sym- 
metric forms which are convenient to evaluate explicitly in terms of norms of 
relevant operators, as already reported briefly. ~6'7~ 

In Section 2, a general scheme of the existence proof is given. Explicit 
evaluations of upper bounds in the proof are performed in Section 3 for 
stochastic systems and in Section 4 in quantal systems. 

2. EX ISTENCE T H E O R E M  A N D  G E N E R A L  S C H E M E  
OF T H E  P R O O F  

A general nonequilibrium situation is described (i) by the following 
microscopic master equation for the probability function P(t) 

t P ( t )  = r ( t ) P ( O  (1) 

for stochastic systems, where F(t) is a temporal evolution operator at time t, 
and (ii) by the following Liouville equation for the density matrix 

~ p(t) - -  [3(f(t), p(t)] --= 7 8~r(t)p(t) (2) 

for quantal systems, where h = 1 and 8~(o is a so-called inner deriva- 
tion in mathematics [cf. g ~ ( o -  J f •  (Kubo's notation) in statistical 
mechanics(aq. 

As in the previous papers, (s-5) it is convenient to introduce a generating 
function tF(?,, t) defined by 

f T r  e~Xp(t) (quantal) 
tF~(h, t) = ~ .  e~Xp(t ) (stochastic) (3) 

for volume D. The probability distribution function p(X, t) of a macro- 
variable X is given by the inverse transformation 

1 I e+i~ p(X, t) = Tr 8(X - X)p(t) = 2-'~ Jc-i~o e-~XtFa(h' t) dh (4) 

The extensivity property of p(X, t) is that 

p(X, t) ~ C exp[~2r t)] (5) 

for large volume ~2. This extensive property can be derived ~2-~) from the 
extensivity of the generating function; i.e., 

tFn(h, t) % C' exp[Q~(h, t)] (6) 
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for large volume f2, namely the fact that 

lira 1 a-. ~ ~ log ~a(fl, t) --- ~(,~, t) (7) 

exists. Here, we prove the existence of the thermodynamic limit of the 
generating function. However, it is more convenient to introduce the 
following generating function: 

�9 n(A,/~, t) - Tr(exp AX) V(t)[exp(�89 exp(-fl(~)Y-f! ~)) exp(�89 (8) 

for two macrovariables X and Y, where p(0) = exp(-fl(~)Yg (~)) and 

P 

V( t )  = exp+ Jo s176 ds 

= 1 + dtl  dt2 ... d t ~ ( h )  ... ~q~(t~) (9) 
r ~ = l  

with 

5o(Q = IF( t )  (stochastic) (10) 
t -- iSy&t ) (quantal) 

For the details of the ordered exponential exp+(...), see the paper by Kubo. (9) 
The time correlation function (X(t)Y(O))t in equilibrium and nonequilibrium 
systems can be obtained by differentiating the above generating function 
W(1,/z, t) with respect to A and /z. In this sense, the existence proof of 
XF( '~, t~, t) in this paper may also give a mathematical foundation to Kubo's 
linear response theory (a'~~ in the thermodynamic limit. Clearly we have 
Wa(~, O, t) = Wa(,~, t). 

In order to prove the existence of the thermodynamic limit 

lira 1 a-. ~ fi  log tFn(),, #, t)  (11) 

we consider systems of increasing size L.  (say, L.  = 2"a, where n is a large 
integer and f2. = L.a),  as in static arguments (l*-~a) and as in Refs. 2-4. 
Correspondingly, we define ~b.(,~,/z, t) by 

~b.(h,/x, t) = f~s log tFa.(h,/~, t) (12) 

As in Refs. 2-4, our main task is to prove that this series of functions 
{~b.(~, t~, t)} satisfies Cauchy's condition on convergence. For this purpose, 
we divide the volume ~ .  into 2 a subdomains f2._ ~ and provide each domain 
with an inside margin of width b (the range of local operators) as shown in 
Fig. 1. Each margined domain of f~._l is denoted by 0._1 (i.e., the volume 
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Fig. 1. Domains ~ with inside margins 
of width b; ~2 is the shaded region. 

f~ .  = L . a ;  L .  = L,~ - 2b). Thus, we redefine Wa.(h, tz, t) by (8) with X, Y, 
Jr and ~(f(t) [or P(t)] defined by the integrals 

X - f X(r) dr, V = f V(r) dr, ~%/'(o = f ~")(r) dr 

and 

/ ,  f 
~"(t) J ~ ( r ,  t) dr or r(t) = J r(r, t) dr (13) 

over the domain (2n. Let us call the boundary region shaded in Fig. 1 do- 
main f~2 and the rest we call domain ~z, as before. That is, ~n = f21 + f~2. 
Then, we separate each of the operators X, Y, ~") ,  J~,~(t), and P(t) into two 
parts: 

X = Xl + X2, Y = Y1 + Y2, ~,~.) = ~ i )  + ~ g )  
(14) 

~ ( t )  = ~f~(t) + ~ ( t )  and r(t)  = r~(t) + r2(t) 

where 

/ .  / .  / .  
Xs= | X(r)dr, J~}~) = | ~(~ ~j(t) = | ~ ( r ,  t)dr, etc. 

J~ 

(15) 

Now, the key point for the proof of the existence of the thermodynamic 
limit is to evaluate the difference A~ between the two generating functions 
corresponding to f21 + f22 and ~1: 

A~ =_ log ~Fal+n2(A,/z, t) - log ~Fnl(A, #z, t) 
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where ~Fr is defined by 

q~r = q~a~+r t~, t) 

= Tr[exp(hX~)][exp + f~ ~(s) dsl exp(�89 

with 

Xr = X1 + ~X2, ~ , ~  = ~ + ~ ,  

exp ~ exp(�89162 

(17) 

~ ( t )  = ~Lal(t) + ~:~LP2(t ) 

(18) 

In the succeeding sections, we derive the following inequalities: 

f2 la~l < I~111X2]l + I~lllX~l] + II~ll + Itr2(s)ll ds (19) 

for stochastic systems and 

[h~[ ~< f~2 • const (20) 

for quantal systems. Here the norm of X, Y, ~<~), and iF(t) is defined by the 
maximum value of the absolute magnitude of a stochastic variable for 
stochastic systems and by that of eigenvalues of an operator for quantal 
systems, and the norm of P(t) is defined by 

II r(t)/I = max ]r(t)Pl/e (21) 
P > 0  

The derivation of inequalities (19) and (20) is the main task of the present 
paper. These inequalities yield 

1r a, t~, t) - 4,~_t(a, t~, t)l < 2-"c(A, tL, t) (22) 

with the use of the facts that s = (2bd)L, a- 1 + (higher) and 0 ,  = L.  a = 
2'~aa a + (higher), where 

c(A, t~, t ) =  [hi IlX(r)/I + 1.111Y(r)lt + II~(r)tl + ]IF(r, s)lt ds 

(23) 

for a stochastic system and it is rather complicated for quantal systems. The 
physical meaning of inequality (22) is that the boundary effect can be neg- 
lected compared with the bulk part for large volume. Repeated application 
of (22) yields 

I~b~+m(A,/z, t) - r t~, t)[ ~< 2-~c(A,/z, t) (24) 

for any positive integer m. This is nothing but Cauchy's condition of the 
uniform convergence of the series r t) for [a] ~< A (fixed), I~1 < M 



168 Masuo Suzuki 

(fixed), and fnite t, if X(r), Y(r), .r176 and ~ ( r ,  t) [or r(r, t)] are operators 
in a Banach algebra (i.e., bounded in the sense of norm). Thus, this series 
possesses a well-defined limit ~b(A,/z, t) as n ~ oo (i.e., f~ -+ oo) for t fixed, 
and furthermore we have 

14,(A, m t)  - 4,.(A, m t)l ~< 2-"c(h,/z, t) (25) 

The limit ~b(h,/z, t) obtained for the above particular sequence of squares is 
also obtained for an arbitrary sequence of squares with edge increasing to 
infinity as in the static proof (11-13) of the thermodynamic limit of free energy. 
Furthermore, the above limiting process is easily extended to that of van 
Hove's sense, as in static cases. (11-~a~ Hence the following theorems hold. 

T h e o r e m  1 ( s t o c h a s t i c ) .  If Hermitian operators (or scalar) X, Y, 
~r and temporal evolution operator P(t) are translationaUy invariant sets 
of local operators in a Banach algebra, then the thermodynamic limit 

lira 1 log q~n()~, t) (26) 

exists in the sense of van Hove, for [A I ~< A, I/z[ ~< M, and finite t. 

T h e o r e m  2 ( q u a n t a l ) .  The limit (26) exists with the same conditions 
as Theorem 1 with the additional conditions that Ihl < ~o, I/z[ </zo, t < to, 
and/3(o </3g~ for appropriate positive constants ho,/zo, to, and fi(o ~ 

. PROOF IN STOCHASTIC SYSTEMS 

As the variables X, Y, and ,Y#") are all scalar in stochastic systems, the 
generating function ~Fr can be written as 

tF~ = E exp(AX~)V~(t)exp(-fi")~ ~ + /zY~) 
con fig 

where 

(27) 

f0 t V~(t) = exp+ {rl(s) + (F2(s)} ds (28) 

This V~(t) is convergent for tIFH < oo. 
Now, the quantity 4 ,  in (15) is expressed as 

fo A~ = d~: W~I E [hX2(exp hXe)Ve(t) exp(-/3(%~d~ ~) + ~Y~) 
config 

+ (exp ~ x ~ ) r ~ ( t ) ( ( - ~ ( ~  ~ + ~ V ~ ) e x p ( - ~ " ~  ~ + ~Y~)) 
t 

+ (exp AXe) re(t) J. Vr V~(s) ds exp(-fl(')~(f~~ +/zYe)] 

(29) 

where we have used the following lemma. 
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Lemma 1. If  ~~ depends upon the parameter ~ in (9), then we have 

~[ ~ ( s )  ds dd~ V(t) = V(t) V*(s) V(s) 

f l  . . . .  o~e(s) = vts )  ~ W(s)V(t )  ds (30) 

The proof of this lemma is given by multiplying V-1(0 on both sides 
from the left side (or right side for the second equation) and differentiating 
it with respect to t, with the use of the properties 

(fo ) V*(t) = V-~(t) = exp_ - s ds 

c~ pt P~I P~n-1 

= 1 + ~ ( - 1 ) " j  d6| dr.... Jo r1,=1 'dO r  

d 
= V(t) = .s 
dt 

dr. ~e(tO ... ze(tl)  

(31) 

(32) 

d V* = - V*(t)~q~(t) (33) 
dt 

In order to evaluate explicitly the upper bound of IA.I, we note the following 
1emma.<2-5) 

kemma 2. I f f  ~< g for any state, then V~(t)f <~ Vr for t/> 0 and 
0 < ~ : <  1. 

This is easily seen from the fact that if h 1> 0, then Vr >1 0 for 
t>~0.  

By applying this lemma to (29), we obtain 

fo { } JA.I .< d~ IAI Ilx21l + 1t-~<"~" + k~Y211 + IIV,*(s)F2(s)V,(s)It ds 

.< [zl llx211 + 1.1 flY2]] + fl")t1"~2~ + IIF2(s)ll ds 

( :2 ) ~< ~= IAI Ipx(r)[r + I~] f/Y(r)ll + ~"~jlo~"~(r)l[ + /It(r, s)ll ds (34) 

Here we have made use of the following simple lemma. 

L e m m a  3. For any unitary operator U and Hermitian operator Q, 
we have 

I[UQU-~II = II QJI (35) 
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Thus, we arrive at the desired inequality (19). Hence Theorem 1 holds 
in stochastic systems. In particular, for a time-independent temporal evolu- 
tion operator P, we have 

s Jlr(r, s)l I = tllr(r)[I (36) ds 

Finally, we show that the above condition on the boundedness of the 
relevant operators is easily satisfied for specific models. For example, we 
consider the kinetic Ising model (14'~5) whose temporal evolution operator is 
defined by 

r(r, t)f({~s} ) = - Wr(~ , ,  t)f((~j}) + W r ( - a r ,  t ) f (  .... - ~ ,  . . . .  ) (37) 

with a transition probability Wr(%, t). Clearly, we have that X(r), Y(r), 
and ~")( r )  are bounded in ordinary situations; i.e., X(r) = ~ = + 1 (local 
magnetization), or X ( r ) =  J~Aa~e~+A (local energy, and IX(r)] ~< z[J], 
where z denotes the number of nearest neighbors) and also ~")(r)  = -/3 (~) x 

" (%-~  (bounded), etc. The norm II F(r, t)U is shown to be bounded as ~.<j~> , t jk  j 

[IV(r, t)[I = max It(r, t ) f l / f <  max W,(e~, t) < ~ (38) 
f>O ar  

The transition probability in (38) is finite from the definition of the model. 

. 

a s  

where 

PROOF IN Q U A N T A L  S Y S T E M S  

The relevant generating function in quantal systems in (17) is expressed 

tFe = Tr(exp hXr189 exp(-fi<%W~ *)) exp(�89 U*(t) (39) 

U~(t) = exp+fltjjo(tJ~ff~(s) ds} 

= . dt2 d t ,  ~ ,~ ( t l )  "" J f ~ ( t , )  
n = l  \ 1 /  *'0 ,JO 

(4o) 

This U~(t) is convergent for H~cf~(t)ll < ~ .  Here, we have used the following 
well-known formula on the inner derivation 8at: 

eOatQ = e ~  Qe - ae (41) 

or more generally 

exp + (3at(t)) Q = {exp + ~ ( t ) }  Q exp _ ( -  ~ ( t ) }  (42) 
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In order to differentiate tF e with respect to ~, it is convenient to note the 
following lemmaJ 2-4) 

Lemma 4. 

f0 d A(x) 1 e (1 _ s)A(X)A'(x) e~A(~) dx e~A(X)A,(x)e(1-~)A(x) dx (43) ~ l e  = = 

This is a direct consequence of Lemma 1 by the transformation of 
variables s = s ' t  for a time-independent operator ~q~ [i.e., A(x)]. 

Using Lemmas 1 and 4, and rearranging the order of operators inside 
the trace operation, we arrive at the following convenient symmetric expres- 
sion for A,: 

f: (jo Am = d~ ~F( 1 Tr {exp[(�89 - s)hXe]}X2 exp[ -  (3 - s)hXe] ds Ae*A e 

+ [(exp �89 t Ue*(s)~,~f2(s)U~(s)ds 

x exp(-�89 + h.c.]Ae*A e 
A 

( f; + exP(�89 )) exp(-�89 [exp(�89189 exp(-�89 ds 

x exp(�89189 ")) + h.c.'~Be*Be 
) 

fo ) + {exp[-fi(~189 - s)Sf~)]}~"~ ) exp[fi")(�89 - s)Yt~ ~)] ds Be*B e (44) 

with Be = Ae* and 

A e = exp(-�89 exp(�89 exp(�89 (45) 

Then, the following lemma can be applied to expression (45). 

[ .emma 5. For any Hermitian operator ogf in a Banach algebra, 

]Tr WQ+Q[ ~< ]]Ydtl Tr Q+Q (46) 

Note that all the operators in front of Ae*A e and Be*B e in (44) are Hermitian 
for real ,~. Such a rearrangement of operators is one of the key points of the 
present paper. For example, the first prefactor of Ae*A e in (44) is shown to 
be Hermitian as follows: 

{fo exp[(�89 - s)hXe]X2 exp[-(�89 - s)AXe] ds = Re* 

fo = exp[-(�89 - s)aXe]X2 exp[(�89 - s)ZXe] ds = X2 (47) 
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where the last equality is obtained by the transformation of variables s '  -- 
1 - s .  

Thus, by the help of Lemma 5, together with the property that 

Tr A~*A~ = Tr B~tB~ = ~ (48) 

we obtain the upper bound of A= in the form 

,A l <. fo de ( fo~{exp[(�89 s)aXe]}X=exp[-(1- s)hXj ds 

+ [exp(�89 U~*(s)~(s)U~(s)ds] exp( - �89  h.c.] 

+ ]/~] [exp(�89 ~ exp(-�89162 

x [f~ [exp(�89189 
• exp(�89 e x p ( - � 8 9  ~ 

k 

+ 

(49) 

That is, we have 

lad .< f~2c~ (50) 
where 

ff c~ = max ]l{exp[(�89 - s)AX~]}X(r)exp[-(�89 - s)AXe]]l ds 
It" \ , , ' 0  

+ I~1 ] [exp(1/3(~ ~ exp(-�89 

x f~ [exp(�89 exp(-�89 ds 
X 1 1 (0 ~ ( i )  exp(:/,Y~) e x p ( - : 5  ~ )] 

+ [3~o]]f~ {exp[-f(o(�89189189 ) 
(50 

In the region where la I < ao, [~1 < ~o,t < to, and/3(o < /3~  in which c. is 
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finite, we obtain (20), and consequently we arrive at Theorem 2. Definite 
values o f  ,~o,/~o, to, and/3~o ~ can be easily obtained by the method of  Robin-  
son, r but  they are rather complicated and are omitted here. 
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